46 research outputs found

    Alternative proteins are functional regulators in cell reprogramming by PKA activation

    Get PDF
    It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial-mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies

    Differential requirements for Tousled-like kinases 1 and 2 in mammalian development

    Get PDF
    The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance

    ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits

    Get PDF

    Visualizing the invisible: Performing chaos theory

    No full text
    Edward Lorenz, a pioneering figure in the field of chaos theory, coined the phrase “butterfly effect” and posed the well-known question “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” In posing the question, Lorenz sought to highlight the intrinsic difficulty of predicting the long-term behavior of complex systems that are sensitive to initial conditions, for example, the weather and climate; these systems are often referred to as chaotic. Taking Lorenz’s butterfly as a starting point, the author’s science theater project Chaos Cabaret seeks to explore the nuances of chaos theory through performance and music

    CEP120 and SPICE1 cooperate with CPAP in centriole elongation

    Get PDF
    Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability. The assembly of procentrioles requires a set of conserved proteins. It is initiated at the G1-to-S transition by PLK4 and CEP152, which help recruit SASS6 and STIL to the vicinity of the mother centriole to organize the cartwheel. Subsequently, CPAP promotes centriolar MT assembly and elongation in G2. While centriole integrity is maintained by CEP135 and POC1 through MT stabilization, centriole elongation requires POC5 and is restricted by CP110 and CEP97. How strict control of centriole length is achieved remains unclear. Here, we show that CEP120 and SPICE1 are required to localize CEP135 (but not SASS6, STIL, or CPAP) to procentrioles. CEP120 associates with SPICE1 and CPAP, and depletion of any of these proteins results in short procentrioles. Furthermore, CEP120 or CPAP overexpression results in excessive centriole elongation, a process dependent on CEP120, SPICE1, and CPAP. Our findings identify a shared function for these proteins in centriole length control
    corecore